sourcecode

Sunday, December 9, 2012

Maximum Subarray


Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
http://www.geeksforgeeks.org/archives/576
http://en.wikipedia.org/wiki/Maximum_subarray_problem


class Solution {//O(n)
public:
    int maxSubArray(int A[], int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if (n < 1) return 0;
        int max = A[0];
        int sum = A[0];
        for(int ii = 1; ii < n; ++ii){
            sum += A[ii];
            if (A[ii] > sum) sum = A[ii];//the previous sum is negative, discard
            if (sum > max) max = sum;
        }
        return max;
    }
};

class Solution {//divide and conquer O(nlgn)
    int* a;//array
    int maxIndex;
    int leftPart(int end){//inclusive
        int sum = 0;
        int max = -9999;
        for(int ii = end; ii >= 0; --ii){
            sum += a[ii];
            if (max < sum){max = sum;}
        }
        return max;
    }
    
    int rightPart(int start){//inclusive
        int sum = 0;
        int max = -9999;
        for(int ii = start; ii >= maxIndex; ++ii){
            sum += a[ii];
            if (max < sum){max = sum;}
        }
        return max;
    }
    
    int getMax(int start, int end){
        if (start == end) return a[start];
        int half = (start+end)/2;
        int lrMax = max(getMax(start, half), getMax(half+1, end));
        return max(lrMax, leftPart(half)+rightPart(half)-a[half]);
    }
public:
    int maxSubArray(int A[], int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        maxIndex = n-1;
        a = A;
        return getMax(0,maxIndex);
    }
};

No comments: