Search a 2D Matrix
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target =
3
, return true
class Solution { pair<bool, int> process(vector<vector<int> >& matrix, int const start, int const end, int const target, bool rowSearch = false, int row = 0){ int const halfIndex = start + (end-start+1)/2; int first_val, last_val, mid_val; if(rowSearch){ first_val = matrix[row][start]; last_val = matrix[row][end]; mid_val = matrix[row][halfIndex]; }else{ first_val = matrix[start][0]; last_val = matrix[end][0]; mid_val = matrix[halfIndex][0]; } if (start == end){ if (target != mid_val) return pair<bool, int>(false, start); else return pair<bool,int>(true, start); } return ( target < mid_val? process(matrix, start, halfIndex-1, target, rowSearch, row): process(matrix, halfIndex, end, target, rowSearch, row) ); } public: bool searchMatrix(vector<vector<int> > &matrix, int target) { // Start typing your C/C++ solution below // DO NOT write int main() function if(matrix.empty() || matrix[0].empty() || target < matrix[0][0] || target > matrix.back().back()) return false; pair<bool, int> colResult = process(matrix, 0, matrix.size()-1, target); if (colResult.first) return true; return process(matrix, 0, matrix[0].size()-1, target, true, colResult.second).first; } };
No comments:
Post a Comment