Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
Bonus points if you could solve it both recursively and iteratively.
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution {//recursion bool mirrorEqual(TreeNode* r1, TreeNode* r2){ if (!r1 && !r2) return true; if (!r1 || !r2) return false; if (r1->val != r2->val) return false; return (mirrorEqual(r1->left,r2->right) && mirrorEqual(r1->right, r2->left) ); } public: bool isSymmetric(TreeNode *root) { // Start typing your C/C++ solution below // DO NOT write int main() function if (!root) return true; return mirrorEqual(root->left, root->right); } };
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution {//iteration vector<int> v; void inOrder(TreeNode* root){ if (!root) return; inOrder(root->left); v.push_back(root->val); inOrder(root->right); } public: bool isSymmetric(TreeNode *root) { // Start typing your C/C++ solution below // DO NOT write int main() function if (!root) return true; v.clear(); inOrder(root); if (v.size()%2 == 0) return false;//has to be odd for(int ii = 0; 2*ii < v.size(); ++ii){ if (v[ii] != v[v.size()-1-ii]) return false; } return true; } };
No comments:
Post a Comment