Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
Bonus points if you could solve it both recursively and iteratively.
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {//recursion
bool mirrorEqual(TreeNode* r1, TreeNode* r2){
if (!r1 && !r2) return true;
if (!r1 || !r2) return false;
if (r1->val != r2->val) return false;
return (mirrorEqual(r1->left,r2->right) && mirrorEqual(r1->right, r2->left) );
}
public:
bool isSymmetric(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (!root) return true;
return mirrorEqual(root->left, root->right);
}
};
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {//iteration
vector<int> v;
void inOrder(TreeNode* root){
if (!root) return;
inOrder(root->left);
v.push_back(root->val);
inOrder(root->right);
}
public:
bool isSymmetric(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (!root) return true;
v.clear();
inOrder(root);
if (v.size()%2 == 0) return false;//has to be odd
for(int ii = 0; 2*ii < v.size(); ++ii){
if (v[ii] != v[v.size()-1-ii]) return false;
}
return true;
}
};
No comments:
Post a Comment